CS 410/510: Advanced Programming

Lecture 7: Hamming, Closures, Laziness

Mark P Jones
Portland State University

The Hamming Set:

hamming $=\{1\}$
$\cup\{2 * x \mid x \in$ hamming $\}$
$\cup\{3 * x \mid x \in$ hamming $\}$
$\cup\left\{5{ }^{*} x \mid x \in\right.$ hamming $\}$
hamming $=\{1,2,3,4,5,6,8,9,10$,
$12,15,16,18,20,24, \ldots\}$

The Hamming Sequence:

hamming = 1 :
(merge [$2{ }^{*} \mathrm{x} \mid \mathrm{x}<-$ hamming]
(merge [$3^{*} \mathrm{x} \mid \mathrm{x}<-$ hamming]
[$5{ }^{*} x \mid x<-$ hamming]))

Main> hamming
$[1,2,3,4,5,6,8,9,10,12,15,16,18$, 20, 24, ... ${ }^{\wedge}$ C\{Interrupted!\}
Main>

The Hamming Sequence:

hamming = 1 :
(merge (map (2*) hamming)
(merge (map (3*) hamming)
(map (5*) hamming)))

Main> hamming
$[1,2,3,4,5,6,8,9,10,12,15,16,18$, 20, 24, ... ${ }^{\wedge}$ C\{Interrupted!\}
Main>
How does this work?

"Infinite" Lists in Haskell:

How do examples like the following work?

Main> [1..]
[1,2,3,4,5,6,7,8,9,10,11^C\{Interrupted!\}
Main> iterate (10*) 1
[1,10,100,1000,10000,100000,1000000^C\{Interrupted!\}
Main> fibs where fibs $=0: 1:[x+y \mid(x, y)<-$ zip fibs (tail fibs) $]$ [0,1,1,2,3,5,8,13,21,34,55,89,144,233, ^C\{Interrupted!\}

Main>

Closures, Delays, Thunks ...

* Haskell Expressions are treated as:
- Thunks
- Closures
- Delayed Computations
- Suspensions

Expressions are evaluated:

- Lazily
- On demand
- By need
- ...

[1..]

The list [1..] is syntactic sugar for the expression enumFrom 1, where:

enumFrom $\mathrm{n}=\mathrm{n}$: enumFrom ($\mathrm{n}+1$)

Code: instructions on how to produce the next element

Data: inputs that are needed to produce the next element

[n..m]

The list [n..m] is syntactic sugar for the expression enumFromTo n m , where:
enumFromTo n m

$$
\begin{gathered}
=\text { if } \mathrm{n}<=\mathrm{m} \text { then } \mathrm{n}: \text { enumFromTo }(\mathrm{n}+1) \mathrm{m} \\
\text { else [] }
\end{gathered}
$$

$$
\text { enumFromTo } \quad \mathrm{n}, \mathrm{~m}
$$

Code: instructions on how to produce the next element

Data: inputs that are needed to produce the next element

sum [1..10]

sum Xs = sum' 0 xs

where sum' n[]$=\mathrm{n}$

$$
\operatorname{sum}^{\prime} \mathrm{n}(x: x s)=\operatorname{sum}^{\prime}(n+x) x s
$$

sum [1..10]
= sum' 0 [1..10]
= sum' 1 [2..10]
= sum' 3 [3..10]
= sum' 6 [4..10]
= ...
= sum' 55 [11..10]
$=55$

Closures in Smalltalk:

- Blocks provide a similar mechanism:
- [$\mathrm{i}:=\mathrm{i}+1$] describes a computation, but doesn't run it (yet)
- aBlock value forces
- Essential to make control structures work:
- aBool ifTrue: [...] ifFalse: [...]
- A bigger example:
- BlockClosure>>>doWhileFalse: conditionBlock
- |result|
- [result := self value. conditionBlock value] whileFalse.
- ^ result

[1..]

In Smalltalk:
A class EnumFrom, instance variable head
A class method: EnumFrom with: head

Accessor methods:
EnumFrom>>> head
\wedge head

EnumFrom>>> tail
\wedge EnumFrom with: (head+1)

map (mult*)

In Smalltalk:

- A class MultiplyBy, instance variables mult, aList
- A method: aList multiplyBy: mult
(Which class should be home to this code?)
- Accessor methods:

EnumFrom>>> head
\wedge aList head * mult

EnumFrom>>> tail
\wedge aList tail multiplyBy: mult

The Hamming Sequence:

5

The Hamming Sequence:

5

The Hamming Sequence:

The Hamming Sequence:

6

The Hamming Sequence:

Lists and Streams:

interface Stream \{
int get();
void advance(); \}

Multiplier Streams:

class MultStream implements Stream \{ private int mult; private List elems; MultStream(int mult, List elems) \{ this.mult = mult; this.elems = elems; \}
public int get() \{ return mult * elems.head; \} public void advance() \{ elems = elems.tail; \} \}

Merge Streams:

class MergeStream implements Stream \{ private Stream left, right;
MergeStream(Stream left, Stream right) \{ this.left = left; this.right = right; $\}$
public int get() \{ int I = left.get(); int $r=$ right.get(); return (l<=r) ? \mid : r;
\}

Merge Streams (advance):

public void advance() \{ int I = left.get(); int r = right.get();
if ($\mathrm{l}==\mathrm{r}$) \{
left.advance();
right.advance();
\} else if $(\mathrm{l}<\mathrm{r})$ \{
left.advance();
\} else \{
right.advance();
\}

Main Loop:

class Hamming \{

 public static void main(String[] args) \{List ham = new List(1);
Stream s = new MergeStream(new MultStream(2, ham), new MergeStream(new MultStream(3, ham), new MultStream(5, ham)));
for (ii) \{
System.out.print(ham.head + ", ");
int next = s.get();
ham = ham.tail = new List(next);
s.advance();

$$
\}
$$

\}
\}

Observations:

* Hamming produces elements faster than the multiply/merge streams consume them
* We will never attempt to read uninitialized values
- The blue pointers are always behind the red pointer
- But the distance between the pointers will grow arbitrarily large ... this can be considered a space leak

YAHS: (yet another Hamming solution)
factorOut :: Int -> Int
factorOut n m

$$
\mathrm{r}==0 \quad \text { = factorOut } \mathrm{nq}
$$

| otherwise = m where (q, r) = divMod m n
inHamming :: Int -> Bool
inHamming $=(1==)$
. factorOut 2
. factorOut 3
. factorOut 5

Summary:

Programming with closures feels very natural in Haskell

- Built-in support for lazy evaluation
- Closure $=$ function + arguments
- Recursion
- But we can program with closures in other languages too!
- One view of objects is as generalized closures:

Instance variables = Data
Methods = Multiple, parameterized Code entry points

- A powerful programming technique (not just for infinite lists)!

concat:

- concat :: [[a]] -> [a]
- concat [[1,2], [3,4,5], [6]]
$=[1,2,3,4,5,6]$
- Laws:
- filter p. concat = concat. map (filter p)
- map f. concat $=$ concat. $\operatorname{map}(\operatorname{map} f)$
- concat . concat = concat . map concat

List Comprehensions:

General form:

- [expression | qualifiers]
where qualifiers are either:
- Generators: pat <- expr; or
- Guards: expr; or
- Local definitions: let defns

Works like a kind of generalized "for loop"

Examples:

$$
\begin{aligned}
& {\left[x^{*} x \mid x<-[1 . .6]\right]} \\
& =[1,4,9,16,25,36]
\end{aligned}
$$

$$
\left[x \mid x<-[1 . .27], 28{ }^{\prime} \bmod ^{\prime} x==0\right]
$$

$$
=[1,2,4,7,14]
$$

$$
\begin{aligned}
& {[\mathrm{m} \mid \mathrm{n}<-[1 . .5], m<-[1 . . n]]} \\
& =[1,1,2,1,2,3,1,2,3,4,1,2,3,4,5]
\end{aligned}
$$

Applications:

- Some "old friends": map fxs $=[\mathrm{fx} \mid \mathrm{x}<-\mathrm{xs}]$
filter p xs $=[x \mid x<-x s, p x]$
concat xss $=[x \mid x s<-x s s, x<-x s]$
- Can you define take, head, or (++) using a comprehension?

Laws of Comprehensions:

$$
\begin{array}{ll}
{[x \mid x<-x s]} & =x s \\
{[\mathrm{e} \mid \mathrm{x}<-\mathrm{xs}]} & =\operatorname{map}(\backslash x->e) \mathrm{xs}
\end{array}
$$

$$
[\mathrm{e} \mid \text { True }] \quad=[\mathrm{e}]
$$

$$
[\mathrm{e} \mid \text { False }] \quad=[]
$$

$\left[\mathrm{e} \mid \mathrm{gs}_{1}, \mathrm{gs}_{2}\right]=\operatorname{concat}\left[\left[\mathrm{e} \mid \mathrm{gs}_{2}\right] \mid \mathrm{gs}_{1}\right]$

Example:

$[(x, y) \mid x<-[1,2], y<-[1,2]]$
= concat

$$
[[(x, y) \mid y<-[1,2]] \mid x<-[1,2]]
$$

= concat

[map (ly -> (x,y)) [1,2] | x <- [1,2]]

= concat

(map (\x -> map (\y -> (x,y)) [1,2]) [1,2])

